inspeccion visual

Machine Learning for NDT, beyond expert systems

Facebook
Twitter
LinkedIn

Attempts have been made for several years now to introduce the breakthroughs made in artificial intelligence in almost all technical areas. Non-Destructive Testing (NDT) was not to be an exception. These inspections analyse the integrity of components or materials by interpreting different signals or images.

In this way, an expert in a given type of test (for example, ultrasonics or eddy currents) is able to discriminate between indications of no significance and real defects to be reported and studied. All of these techniques are highly procedural and regulated and, in all cases, require rigorous training qualifying the individual to perform this type of work.

With artificial intelligence, and more specifically in the area of machine learning, the aim is for the algorithms to learn from the data without prior knowledge of the issue in hand or of the relationships between its variables, in order for them to be able to acquire an “understanding” better than, or at least equivalent to, that of an expert.

At Tecnatom, we have been incorporating AI tools applicable to different fields of NDT in our software for a number of years. A clear example of this is the eddy current evaluation of steam generator tubes at nuclear power plants, these tubes being critical components for the operation of such facilities. Another example is the incorporation of AI in the evaluation of ultrasonic register CSCANs.

Can Machine Learning algorithms provide support for Non-Destructive Testing?

The answer is: most certainly.

Indeed, from the very beginnings of artificial intelligence, a parallel path was initiated on which different tools were used to progressively improve evaluation processes, making use of automatic analysis systems based on mathematical models and expert systems.

At present, and thanks to current computation capacities, most lines of development work with algorithms that learn autonomously (with supervision or otherwise) to solve tasks, perform classifications or identify patterns. This is precisely what is required in the analysis of components by means of NDT.

What are the greatest challenges when implementing them?

One of the first steps to be dealt with when addressing NDT through machine learning is to ensure the availability of an adequate data set.

On the one hand, it is necessary for there to be a sizeable quantity of data serving as an example for the algorithms to learn. This quantity will depend strongly on the complexity of the task to be performed. However, the performance of tasks not requiring large amounts of data will not require a machine learning algorithm, but simply a robust expert system with defined rules.

Furthermore, these data must contain a sufficient number of samples with the case histories that we want to learn to discriminate and, generally speaking, there are very few real indications available. It is also necessary for the data to be “comparable”, for which reason they must be standardised in one way or another in order for irrelevant variables not to influence the results.

What benefits does the promise of Artificial Intelligence provide?

Fundamentally: consistency, reliability and speed and, therefore, the obviously attractive and highly sought reduction of costs.

  • Consistency and reliability must be demonstrated through the corresponding validation and qualification tests, but once the ratios sought are achieved, they remain constant over time since no human factors come into play and, as a result, the error index remains stable.
  • Time reduction is another parameter that is fundamentally important in any industrial activity, since it has a direct impact on cost reduction and improvement of services, providing results much more directly.

What is our position?

Firstly, given the number of algorithms and networks available, one option is to divide evaluation tasks and implement specific and partial tools instead of attempting to provide global solutions.

It is also necessary to adopt a medium/long-term approach, establishing objectives and orienting inspections from data acquisition to evaluation procedures with a view to providing consistent and useful databases for the training of future SW tools.

The advantages are so clear that work should proceed on their implementation. In this respect there are mixed solutions that have been already been implemented in the sector in which experts work with the support of algorithms that help them to improve the quality of their processes and reduce times, allowing them to pay greater attention to those indications that are really significant.

For further information on the history of AI and its applications in NDT, click on this link.

Author: Alfonso Laín

SUBSCRIBE TO OUR NEWSLETTER

* Mandatory field
The responsible party for the processing of the data is TECNATOM, S.A. who will process it in order to respond to your enquiry.
In order to address the enquiry, we may hand over your data to other entities within the TECNATOM Group. TECNATOM service providers may also have access to your data.
You have the right to access, correct and remove your data, as well as other rights which are explained in detail in our Política de Privacidad.
By clicking on the “Send” button you declare your knowledge of and accept our Política de Privacidad.

LEGAL INFORMATION

Reproduction of all or part of the contents without permission of the owners is prohibited.

Tecnatom desarrollará para ITER Organization su plataforma de simulación de fusión nuclear

El proyecto ITER es uno de los proyectos de inversión más grandes del mundo, en el que colaboran más de 35 países con el objetivo de demostrar la viabilidad de la fusión nuclear como fuente de energía inagotable. Para ello se está construyendo uno de los dispositivos de fusión por confinamiento magnético más grandes del mundo, en el que se probarán tecnologías, materiales y regímenes físicos integrados necesarios para la producción de electricidad basada en la fusión.

Tecnatom forma parte del proyecto aportando la creación de la plataforma de simulación de lo que será el simulador de la sala de control de ITER, la integración de modelos existentes desarrollados por distintos suministradores, la integración del sistema de control CODAC, el desarrollo de modelos adicionales, así como el mantenimiento y la formación en la plataforma.

Digital technologies and monitoring

Déjanos tus datos para poder descargarte el dosier.

* Campo obligatorio

El responsable del tratamiento de los datos es TECNATOM, S.A. quien los tratará con la finalidad de atender su consulta.

En función de la consulta planteada, podríamos ceder sus datos a las entidades que integran el Grupo TECNATOM. Asimismo, podrán acceder a sus datos los prestadores de servicios de TECNATOM.

Tiene derecho a acceder, rectificar y suprimir sus datos, así como otros derechos, tal y como se explica de forma detallada en nuestra Política de Privacidad.

Al hacer click en el botón “Enviar” declaras conocer y aceptar nuestra Política de Privacidad.

TecSOLCEP

Déjanos tus datos para poder descargarte el dosier.

* Campo obligatorio

El responsable del tratamiento de los datos es TECNATOM, S.A. quien los tratará con la finalidad de atender su consulta.

En función de la consulta planteada, podríamos ceder sus datos a las entidades que integran el Grupo TECNATOM. Asimismo, podrán acceder a sus datos los prestadores de servicios de TECNATOM.

Tiene derecho a acceder, rectificar y suprimir sus datos, así como otros derechos, tal y como se explica de forma detallada en nuestra Política de Privacidad.

Al hacer click en el botón “Enviar” declaras conocer y aceptar nuestra Política de Privacidad.

Digital technologies and monitoring

Déjanos tus datos para poder descargarte el dosier.

* Campo obligatorio

El responsable del tratamiento de los datos es TECNATOM, S.A. quien los tratará con la finalidad de atender su consulta.

En función de la consulta planteada, podríamos ceder sus datos a las entidades que integran el Grupo TECNATOM. Asimismo, podrán acceder a sus datos los prestadores de servicios de TECNATOM.

Tiene derecho a acceder, rectificar y suprimir sus datos, así como otros derechos, tal y como se explica de forma detallada en nuestra Política de Privacidad.

Al hacer click en el botón “Enviar” declaras conocer y aceptar nuestra Política de Privacidad.